# GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION <br> N1/2 OF 35-26-30-W1 <br> LAKE OF THE PRAIRIES, SASKATCHEWAN 

CLIENT: SUN HILLS RESORT LTD.
FILE NO: GE-0923
DATE: DECEMBER 15, 2009

## TABLE OF CONTENTS

1.0 INTRODUCTION ..... 1
2.0 DESCRIPTION OF SITE ..... 2
3.0 FIELD AND LABORATORY INVESTIGATION ..... 2
4.0 GEOTECHNICAL ANALYSIS ..... 4
4.1 Geology ..... 4
4.2 Stratigraphy ..... 4
4.3 Groundwater ..... 6
5.0 SLOPE STABILITY ..... 6
5.1 History of Slope Movement ..... 7
5.2 Stratigraphy ..... 7
5.3 Topography ..... 7
5.4 Groundwater ..... 8
5.5 Discussion ..... 8
6.0 SLOPE STABILITY ANALYSIS ..... 8
7.0 SITE DEVELOPMENT GUIDELINES ..... 9
8.0 FOUNDATION CONSIDERATIONS ..... 10
8.1 Spread Footing and/or Post and Pad Type of Foundation System ..... 11
9.0 EXCAVATION CONSIDERATIONS ..... 11
10.0 FLOOR SLAB CONSIDERATIONS ..... 12
10.1 Structurally Supported Floor Systems ..... 12
10.2 Grade Supported Floor Slabs ..... 12
12.0 OTHER ..... 13
13.0 CLOSURE ..... 15

## DRAWINGS

Site Plan
Classification of Soils for Engineering Purposes
Symbols and Terms Used in the Report
Stratigraphic Cross Sections
Test Hole Logs
Grain Size Analyses
Guide for the use of Sulphate Resistant Cement

GE-0923-1
GE-0923-2
GE-0923-3 to -4
GE-0923-5 to -6
GE-0923-7 to -14
GE-0923-15 to -18
GE-0923-19

## APPENDICES

APPENDIX A: Slope Stability Cross Sections


GROUND ENGINEERING LTD.
CIVIL \& GEOENVIRONMENTAL ENGINEERS
415 - 7th AVENUE - REGINA - SASKATCHEWAN • CANADA - S4N 1P1 TELEPHONE: (306) 569-9075 FAX: (306) 565-3677 EMAIL: geground@accesscomm.ca

FILE: GE-0923

Sun Hills Resort Ltd.
c/o Konrad \& Claudia Zangl
P.O. Box 194

TOGO, Saskatchewan
SOA 4E0
Dear Konrad \& Claudia:

## SUBJECT: GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION N1/2 OF 35-26-30-W1 <br> LAKE OF THE PRAIRIES, SASKATCHEWAN

### 1.0 INTRODUCTION

This report presents the results of a site specific subsurface soils investigation and geotechnical analysis carried out for the above captioned project located approximately 11 km south of the Town of Togo, Saskatchewan. It is understood that the proposed development consists of 48 residential lots overlooking the north valley wall adjacent to Lake of the Prairies. The objectives of this investigation were to provide the following information:
. 1 To define the subsurface soil stratigraphy, groundwater regime and engineering properties of the foundation soils at the proposed subdivision site.
.2 To provide design and installation recommendations for the most suitable and economical foundation system to support the proposed residential buildings;
. 3 To comment on possible excavation and construction problems related to foundation construction with particular reference to groundwater conditions;
. 4 To provide recommendations for floor slab design and construction;
. 5 To determine the slope stability, comment on possible slope stability problems and provide recommendations for site development, including suitable building sites and set-back distances for residential development;
. 6 To provide recommendations on pertinent geotechnical issues identified during the subsurface investigation.

Authorization to proceed with this work was received verbally on April 15, 2009.

### 2.0 DESCRIPTION OF SITE

The study area shown in Figure 1 is located in the N1/2 of 35-26-30-W1, approximately 11 kilometers south of the Town of Togo, Saskatchewan. The property includes a relatively flat till plain overlooking the Assiniboine River Valley and Lake of the Prairies. Lake of the Prairies is a man-made lake which was formed following construction of the Shellmouth Dam. The valley wall (south of the proposed residential lots) shows signs of landslide activity in the past. There is an elevation difference of approximately 90 metres between Lake of The Prairies and the top of the valley wall.

### 3.0 FIELD AND LABORATORY INVESTIGATION

The subsurface conditions were investigated by drilling eight (8) test borings at the locations shown on Drawing No. GE-0923-1. The test holes were drilled on May 12 and 13, 2009, using a truck-mounted, Brat 22 digger equipped with a 150 mm diameter continuous flight auger and were drilled to depths ranging from 13.7 to 15.2 metres below existing ground surface.


FIGURE 1

Representative disturbed auger samples and undisturbed Shelby tube soil samples were recovered from the test borings at selected intervals and were taken to our laboratory for analysis. Standard Penetration tests were conducted in Test Holes 102, 103, 104 and 105. Each soil sample was visually examined to determine its textural classification and a natural moisture content test was performed on each soil sample. In addition, Atterberg Limits, gradation analysis, dry density, unconfined compressive strength and sulphate content tests were performed on selected soil samples. Estimates of the undrained shear strength were made using both a pocket penetrometer and a laboratory vane shear apparatus. Details of the soil profile, samples taken, laboratory test results and stratigraphic interpretations of the subsoils are presented on Drawing Nos. GE-0923-5 to -18, inclusive.

Standpipe piezometers were installed in Test Holes 101, 103, 105, 106 and 108 to monitor groundwater levels. Details of the piezometer installations are shown on the corresponding test hole logs. The water levels were measured after the test drilling was completed and again on June 8 and August 25, 2009.

### 4.0 GEOTECHNICAL ANALYSIS

### 4.1 Geology

The study area is located in the physiographic division known as the Assiniboine River Plain. The prominent landform adjacent to the valley wall is a till plain. The glacial sediments which form the surficial geology in the study area consist predominantly of sand, glacial till and lacustrine clay. The adjacent valley was carved out of the till plain by glacial meltwater during the last deglaciation period. The valley has since been partially filled with alluvium. The underlying bedrock consists of Upper Cretaceous shale of the Pierre Shale Formation.

### 4.2 Stratigraphy

The drilling information indicates that along the top of the valley wall, the surficial topsoil is underlain by a sand stratigraphic unit which extends to depths ranging from 1.2 to 2.4 metres below existing grade. The sand is medium to coarse grained with trace amounts of gravel and occasional cobbles. The sand is loose to medium dense with Standard Penetration ' N '
values ranging from a low of 8 blows per foot to a high of 29 blows per foot. Typical gradations of the sand are shown on Drawing Nos. GE-0923-15 to 17, inclusive.

The surficial sand unit is underlain by a thin veneer of glacial till which extends to depths ranging from 3.6 to 4.7 metres below existing grade in Test Holes 101 through 105, inclusive. The till is a heterogeneous mixture of clay, silt, sand and gravel with numerous sand lenses and occasional cobblestones and boulders. The till is medium plastic with an average Liquid Limit of 41 percent and an average Plasticity Index of 27 percent. The till is clayey and stiff to hard in consistency with undrained shear strengths ranging from 120 to 290 kPa based on unconfined compression tests and has a dry density ranging from 1.64 to 1.80 tonnes per cubic metre. The term till on the borehole logs indicates that the material originates from geological processes associated with glaciation. These processes produce a material that is heterogeneous in composition and as such, may contain pockets and/or seams of material such as sand, gravel, silt or clay. Thin lenses of fine grained sand and clay were encountered at various depths within the till unit. The sand and till units were not encountered in the test holes drilled on the lower portion of the valley wall (Test Holes 106, 107 and 108).

The surficial topsoil and/or sand and till units are generally underlain by a silty clay stratigraphic unit which extends to the maximum depth penetrated in Test Holes 101 through 105 ( 15.2 metres) and to depths ranging from 3.4 to 6.5 metres below grade in the remaining test holes. The clay is moist and stiff to hard in consistency with undrained shear strengths ranging from 75 to 230 kPa based on vane shear and unconfined compression tests and has a dry density ranging from 1.46 to 1.88 tonnes per cubic metre. The clay is a medium to highly plastic material with a Liquid Limit ranging from 38 to 65 percent and a Plasticity Index ranging from 25 to 47 percent. The clay unit was not encountered in Test Hole 107.

A surficial stratified drift unit was encountered in Test Hole 107 which extends to a depth of 2.4 metres below grade. The drift consists of interbedded layers of silt and sand. The drift sediments are normally consolidated, moist and oxidized. A typical gradation of the sand encountered in Test Hole 107 is shown on Drawing No. GE-0923-18.

The bedrock surface was encountered beneath the surficial drift unit in Test Holes 106 through 108 , inclusive. The bedrock in this area is known as the Pierre Shale Formation. The shale extends to the maximum depth penetrated in the test holes ( 13.7 to 15.2 metres). The shale consists on non-calcareous, highly plastic clay of marine origin which contains interbedded silt and bentonitic layers. The shale is moist and stiff to hard in consistency with undrained shear strengths ranging from 120 to 230 kPa based on vane shear and unconfined compression tests and has a dry density ranging from 1.49 to 1.60 tonnes per cubic metre.. Atterberg Limits test results indicate that the shale has a Liquid Limit in the order of 65 percent and a Plasticity Index in the order of 50 percent.

### 4.3 Groundwater

The soils encountered at this site are generally moist, however, saturated sand lenses were encountered in Test Holes 102, 103, 104, 105 and 106 at varying depths below the existing ground surface. Water levels in the piezometers were measured by our technologists as shown in Table 1, below:

TABLE 1
PIEZOMETRIC SURFACE MEASUREMENTS

| STANDPIPE PIEZOMETER NO. | DATE MEASURED | DEPTH OF WELL FROM GROUND SURFACE (m) | GROUNDWATER LEVEL FROM TOP OF PIPE (m) | GEODETIC <br> PIEZOMETRIC <br> SURFACE <br> ELEVATION <br> $(\mathrm{m})$ |
| :---: | :---: | :---: | :---: | :---: |
| TH 101 | May 12, 2009 | 15.2 | Dry | - - |
|  | June 8, 2009 |  | 14.4 | 505.1 |
|  | August 25, 2009 |  | 14.6 | 504.9 |
| TH 103 | May 12, 2009 | 6.3 | Dry | - |
|  | June 8, 2009 |  | 2.9 | 516.9 |
|  | August 25, 2009 |  | 3.9 | 515.9 |
| TH 105 | May 12,2009 | 4.9 | Dry | - |
|  | June 8, 2009 |  | 5.0 | 515.4 |
|  | August 25, 2009 |  | * | * |
| TH 106 | May 12, 2009 | 15.2 | Dry | - |
|  | June 8, 2009 |  | 5.6 | 433.5 |
|  | August 25, 2009 |  | 5.8 | 433.3 |
| TH 108 | May 12, 2009 | 15.2 | Dry | - |
|  | June 8, 2009 |  | 15.5 | 426.9 |
|  | August 25, 2009 |  | 15.5 | 426.9 |

* TH 105 was destroyed prior to August 25, 2009 monitoring.


### 5.0 SLOPE STABILITY

The following information provides an assessment of the slope stability of the subject property based on interpretation of the subsurface data.

### 5.1 History of Slope Movement

The valley in which Lake of the Prairies (Assiniboine River Valley) is situated is the remnant of an early post glacial drainage system. During deglaciation, rushing meltwater cut a large, steep-walled valley through the surficial glacial deposits and into the underlying shale bedrock. Undercutting of the bedrock foundation materials undermined the slopes and produced the slumping activity which is still evident in some areas along the valley wall. The slumped areas form the ridges and localized discontinuities in surface drainage now present on the valley walls. The slumping activity has now subsided due to the deposition of post-glacial alluvium in the valley which has produced a buttressing effect, helping to stabilize the valley walls. However, active landsliding is still occurring along the shoreline where wave erosion is undermining the slope. The lot locations for this proposed development are located on the till plain above the valley wall.

### 5.2 Stratigraphy

The surficial sand and glacial till encountered at the top of the valley is relatively competent. One of the main factors controlling slope stability is the position of the drift/bedrock contact with respect to the lake level. Where the drift/bedrock contact is at or near the lake level, slopes are flatter and the slump blocks are more frequent. These slopes are actually less stable than the steeper sloped areas where the drift/bedrock contact is below the lake level. According to SRC Surficial Geology maps of the area, the drift/bedrock contact in the study area is above the lake level at an elevation of approximately 472 metres, Geodetic.

### 5.3 Topography

The valley wall along Lake of the Prairies exhibits the distinctive topographic features of a slope which has been subjected to landsliding. The identifying features are a steep headscarp and a hummocky broken slope. On air photographs, a series of arcuate, interconnected rear headscarps and a pattern of subparallel ridges down the slope are evident. Luxuriant vegetation growth is evident in the numerous undrained closed depressions which have formed behind many of the slump blocks.

### 5.4 Groundwater

One of the major factors controlling slope stability is the position of the water table. It is generally accepted that a slope that is fully drained will stand at an angle approximately twice that of a slope that has the groundwater table at surface. A high water table induces a higher water pressure at the slide surface which tends to hold the soil particles apart, thereby reducing the effective stress. The total weight of overlying soil is taken by the sum of the pore pressure and the effective stress between soil particles. Therefore, a rise in the water table causes a reduction in the factor of safety against sliding, conversely, lowering the water table would tend to stabilize the slide.

### 5.5 Discussion

Once landsliding has occurred on a valley slope, the factor of safety with respect to slope stability would be close to unity under natural conditions before any new developments constructed by man. The factor of safety is defined as the resisting forces divided by the driving forces. A safety factor close to 1.0 means that small changes in the stress environment may initiate additional downslope movement in the landslide slump blocks. Usually these movements are gradual creep type movements that range from a few millimetres to possibly several centimetres per year. Large, sudden drops in the order of 300 to 600 mm may also occur, however, these types of movements are less common than gradual creep type movements.

### 6.0 SLOPE STABILITY ANALYSIS

The purpose of a slope stability analysis is to determine the factor of safety of a potential failure surface. The analysis involves passing an assumed slip surface (generally circular) through the slope and dividing the inscribed portion into slices. The factor of safety is defined as a ratio between the resisting force and the driving force both applied along the potential failure surface. When the driving force due to the weight of the soil is equal to the resisting force due to shear strength, the factor of safety is equal to 1 and failure is imminent. The slope stability analysis was performed using the Slide Version 5.0 computer software developed by Rocscience Inc. An effective stress slope stability analysis using the Morgenstern-Price method and half sine interslice force function was used.

Soil strength parameters were determined from the laboratory testing and information available in our company files as shown in Table 2, below.

TABLE 2
SOIL PARAMETERS

| SOIL TYPE | PEAK STRENGTH |  | UNIT <br> WEIGHT |
| :---: | :---: | :---: | :---: |
|  | Friction <br> Angle | Cohesion |  |
| Sand | $35^{\circ}$ | 0.0 kPa | $19.0 \mathrm{kN} / \mathrm{m}^{3}$ |
| Till | $28^{\circ}$ | 10.0 kPa | $20.0 \mathrm{kN} / \mathrm{m}^{3}$ |
| Clay | $20^{\circ}$ | 8.0 kPa | $18.5 \mathrm{kN} / \mathrm{m}^{3}$ |
| Shale Bedrock | $14^{\circ}$ | 8.0 kPa | $18.5 \mathrm{kN} / \mathrm{m}^{3}$ |

The factor of safety was calculated at the locations of Cross Sections 1-1, 2-2, and 3-3 (shown on Drawing No. GE-0923-1) for the existing conditions at the top of the valley wall. Using the soil strength parameters shown above, the long term factor of safety against sliding at each cross section location is shown in Table 3, below.

TABLE 3
CALCULATED SAFETY FACTORS

| CROSS SECTION <br> LOCATION | EXISTING FACTOR <br> OF SAFETY |
| :---: | :---: |
| $1-1$ | 1.11 |
| $2-2$ | 1.22 |
| $3-3$ | 1.12 |

Our test results and slope stability analysis indicates that the top of the existing valley wall has a factor of safety ranging from 1.11 to 1.22 . The stability analysis is shown on the drawings included in Appendix A.

### 7.0 SITE DEVELOPMENT GUIDELINES

Development in an area of previous landslide activity involves some risk. The risk is associated with the possible reactivation of old landslides or the creation of entirely new landslides. At the present time, the top of the valley wall is relatively stable and the probability of major slope movements taking place in the future is considered to be low. Our analysis indicates that the factor of safety against retrogressive sliding at the top of the valley wall is in the order of 1.11 to 1.22 using a minimum set-back distance of 6 metres
from the edge of the valley wall. Residential lots are considered to be feasible from a geotechnical engineering standpoint provided development controls are implemented to minimize the risk of future landslides. To minimize the potential problems associated with slope stability, the following guidelines are provided for development at this time.
.1 The majority of each lot is located above the edge of the valley wall where no previous landslide activity has occurred. A minimum set back distance of 6.0 metres from the edge of the valley wall is recommended. Walk-out type basements are not recommended for Lots in Block B but may be suitable for Lots 1 to 5, Block A.
.2 Water should be encouraged to drain off the properties. The natural drainage courses down the valley wall should be maintained as best as possible.
. 3 The valley walls are highly susceptible to erosion. Removal of existing vegetation should be kept to a minimum. Areas where the vegetation is disturbed should be revegetated as soon as possible. Any erosion which does occur should be repaired immediately.
.4 Excessive lawn and garden watering should not be permitted near the edge of the valley wall. Excessive lawn and garden watering will increase the water table and will therefore reduce the factor of safety of the slope.
. 5 Swimming pools usually leak and contribute substantial quantities of water into the soil. For this reason, swimming pools should not be permitted without a liner system designed or reviewed by a geotechnical engineer.

### 8.0 FOUNDATION CONSIDERATIONS

It is anticipated that the foundation loads for the proposed residential buildings will be relatively light. The soil conditions at this site are suitable for shallow footing type foundation systems. Our specific design recommendations for footing type foundation systems are presented below:

### 8.1 Spread Footing and/or Post and Pad Type Foundation System

. 1 Properly constructed shallow spread footings bearing on the undisturbed soil may be designed for a safe net bearing pressure of $120 \mathrm{kPa}(2,500 \mathrm{psf})$. Maximum toe pressure under wind loading may exceed the average pressure by no more than onethird (1/3). Regardless of footing pressure considerations, the minimum width of footings should be 450 mm .
. 2 The footings should be placed at a minimum depth of 1.8 metres below finished grade elevation for frost protection. If the footings are placed above this depth, insulation should be placed to prevent frost penetration into the soils beneath the footings. All footings should be adequately reinforced to resist localized stresses.
. 3 Dewatering should not be required at this site, however, every effort should be made to pour the footings as soon as possible after excavation is completed. The steel reinforcing mats should be made up in advance to minimize the possibility of soil disturbance during placement.
. 4 All loose or disturbed material at the base of the footing excavations should be compacted prior to placement of forms, reinforcing steel and concrete.
. 5 Landscaping should ensure a minimum of 3\% slope away from the perimeter of the buildings.

### 9.0 EXCAVATION CONSIDERATIONS

Excavations will be in the surficial sand and till units. Conventional excavation procedures should therefore be applicable to the soils at this site. Occupational Health and Safety Regulations require that any trench or excavation in which persons must work must be cut back at least one (1) horizontal to one (1) vertical or a temporary shoring system must be used to support the sides of the excavation.

### 10.0 FLOOR SLAB CONSIDERATIONS

The soil conditions are suitable for either grade supported floor slabs or structurally supported floors constructed over a crawl space. The following recommendations are provided for both types of floor systems.

### 10.1 Structurally Supported Floor Systems

A structural floor system would be the most positive way to ensure satisfactory long term performance of the floor. We recommend the following items of work for preparation of the subgrade in the crawl space area beneath the floor slab.
. 1 The crawl space should be covered with a Permalon vapour barrier to reduce the humidity in the crawl space and prevent drying of the subgrade soils.
. 2 Service lines and heating ducts could be installed beneath the floor and this would provide a more comfortable floor for the people occupying the building. Heating ducts should be insulated to prevent heat loss and potential drying of the subgrade soil.
. 3 The ground surface in the crawl space should be graded to slope towards a positive outlet in order to drain any water that may enter the crawl space area.
. 4 Provisions should be made to ventilate the crawl space area.

### 10.2 Grade Supported Floor Slabs

. 1 The subgrade under a grade supported slab should be as uniform as possible. The exposed subgrade should be proof-rolled with a heavy sheepsfoot or vibratory padfoot roller. Any soft or spongy areas should be excavated and filled with compacted granular material. A well graded pit run sand (Type 8) compacted to 95\% Standard Proctor density is suitable for this purpose. The final 200 mm below underside of the floor slab should be radon rock.
. 2 The concrete slab in areas where only light floor loads are to be supported, may have a minimum thickness of 100 mm . The minimum 28 day concrete compressive strength should be specified as 25 MPa .
. 3 A generous amount of reinforcing steel running both ways in the slab is desirable.
. 4 A layer of robust polyethylene sheeting should be placed between the granular base and the concrete slab to deter the migration of moisture through the floor.

## 11.0 OTHER

.1 The results of this investigation indicate that additional lots are feasible in the flat areas near the bottom of the slope where TH 106, 107 and 108 were drilled. Site specific development guidelines by a geotechnical engineer will be required for future development in this area based on the proposed lay-out of the lots.
. 2 Adequate drainage away from the buildings should be provided and maintained to minimize infiltration of water into the subgrade. The building sites should be set at as high an elevation as possible in relation to the surrounding area.
. 3 Test results on selected samples indicate that the soluble sulphate contents in the soils are in order of 0.04 to 0.06 percent by dry soils weight. Class 2 Concrete with Type 50 cement as specified in the Guide for Use of Sulphate Resistant Cement on Drawing No. GE-0923-19, may be used for all concrete placed in contact with the native soils.
.4 In the event that changes are made in the design, location or nature of the project, the conclusions and recommendations included in this report would not be deemed valid unless the changes in the project were reviewed by our firm. Modification to this report would then be made if necessary. Furthermore, it is recommended that this firm be allowed an opportunity for a general review of the final design plans and specifications in order to ensure that the recommendations made in this report are properly interpreted and implemented. If this firm is not allowed the opportunity for this review, we assume no responsibility for the misinterpretation of any of the recommendations.
.5 It is recommended that GE Ground Engineering Ltd. be retained to provide inspection services during construction of this project. This is to observe compliance with the design concepts, specifications and recommendations and to allow design changes in the event that the subsurface conditions differ from what was anticipated.
. 6 This report has been prepared for Sun Hills Resort Ltd. and is intended for the specific application to the design and construction of the proposed residential subdivision located in the N1/2-35-26-30-W1M south of the Town of Togo, Saskatchewan. The analysis and recommendations are based in part on the data obtained from the test hole logs. The boundaries between soil strata have been established at bore hole locations. Between the boreholes, the boundaries are assumed from geological evidence and may be subject to considerable error. Contractors bidding on the project works are particularly advised against reviewing the report without realizing the limitations of the subsurface information. It is recommended that Contractors should make such tests, inspections and other on-site investigations as is considered necessary to satisfy themselves as to the nature of the conditions to be encountered.
.7 The soil samples from this site will be retained in our laboratory for 90 days following the date of this report. Should no instructions be received to the contrary, these samples will then be discarded.

### 12.0 CLOSURE

We trust that this report is satisfactory for your purposes. If you have any questions or require additional information, please contact this office.


Yours very truly GE GROUND ENGINEERING LTD.


Prepared by: PAUL WALSH, P. ENG.


Reviewed by: TIM ADELMAN , P. ENG., P. GEO.

## PW:pw

Distribution:
Sun Hills Resort Ltd. (2 copies) Community Planning (1 copy)
Pw872 Office (1 copy)


DRAWINGS


# CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES <br> ASTM Designation: D 2487-69 AND D 2488-69 <br> (Unified Soil Classification System) 



















|  | In Soil |  |  | Types of cement and limiting mix proportions for dense, fully compacted concrete and special protective measures when necessary (note 2). The cement contents shown apply to 20 mm maximum size aggregate which should comply with BS 1047. |
| :---: | :---: | :---: | :---: | :---: |
| Class | Total $\mathrm{SO}_{3}$ | $\mathrm{SO}_{3}$ in $1: 1$ <br> Water Extract | In GroundWater |  |
| 1 | Less Than $0.2 \%$ |  | Less Than 30 Parts / 100000 | Ordinary Portland cement or Portland blastfurnace cement. For structural reinforced concrete work; minimum cement content $280 \mathrm{~kg} / \mathrm{m}^{3}$ ( $475 \mathrm{lbs} . / \mathrm{cu} . \mathrm{yd}$.); maximum free water/cement ratio 0.55 by waight. For plain concrete, these recommendations may be relaxed. |
| 2 | $\begin{aligned} & 0.2 \% \\ & \text { to } \\ & 0.5 \% \end{aligned}$ |  | $\begin{aligned} & 30-120 \\ & \text { parts / } \\ & 100000 \end{aligned}$ | See Note 1. <br> (a) Ordinary Portland cement or Portland blastfurnace cement. Minimum cement content $330 \mathrm{~kg} / \mathrm{m}^{3}$ ( $560 \mathrm{lbs} . / \mathrm{cu}$. yd.); maximum free water/cement ratio 0.50 by weight. <br> (b) Sulphate -resistant Portland cement. Minimum cement content $280 \mathrm{~kg} / \mathrm{m}^{3}$ ( $475 \mathrm{lbs} . / \mathrm{cu} . y \mathrm{y}$.); maximum free water/ cement ratio 0.50 by weight. <br> (c) Supersulphated cement. Minimum cement content $310 \mathrm{~kg} / \mathrm{m}^{3}$ ( 525 !bs./cu. yd.); maximum free water/cement ratio 0.50 by weight. |
| 3 | $\begin{gathered} 0.5 \% \\ \text { to } \\ 1.0 \% \end{gathered}$ | 2.5-5.0 g/litre | $\begin{aligned} & 120-250 \\ & \text { parts / } \\ & 100000 \end{aligned}$ | Sulphate-resisting Portiand cement, supersulphated cement or high alumina cement. Minimum cement content $330 \mathrm{~kg} / \mathrm{m}^{3}$ ( $560 \mathrm{lbs} . / \mathrm{cu}$. yd.); maximum free water/cement ratio 0.50 by weight. |
| 4 | $\begin{gathered} 1.0 \% \\ 10 \\ 2.0 \% \end{gathered}$ | $5.0-10.0$ <br> g/litre | $\begin{aligned} & 250-500 \\ & \text { parts / } \\ & 100000 \end{aligned}$ | (a) Sulphate-resisting Portland cement or supersulphated cement. Minimum cement content $370 \mathrm{~kg} / \mathrm{m}^{3}$ ( $625 \mathrm{lbs} . / \mathrm{cu} . \mathrm{yd}$.) maximum free water/cement ratio 0.45 by weight. <br> (b) High alumina cement. Minimum cement content $340 \mathrm{~kg} / \mathrm{m}^{3}$ ( $575 \mathrm{lbs} . / \mathrm{ccu}$. yd.); maximum free water/cement ratio 0.45 by weight. |
| 5 | Over $2 \%$ | Over <br> 10 <br> g/litre | Over 500 parts / 100000 | Either cements described in 4(a) plus adequate protective coatings of inert material such as asphalt or bituminous emulsions reinforced with fibreglass membranes, or high alumina cement with a minimum cement content of $370 \mathrm{~kg} / \mathrm{m}^{3}$ ( $625 \mathrm{lbs} . / \mathrm{cu} . \mathrm{yd}$.); maximum free water/cement ratio 0.40 by weight. |

NOTES:

1. The cement contents given in class 2 are the minima recommended by the manufacturers. For $\mathrm{SO}_{3}$ contents near the upper limit of class 2, cement contents above these minima are advised.
2. For severe conditions, e.g. thin sections, sections under hydrostatic pressure on one side only and sections partly immersed, consideration should be given to a further reduction of water/cement ratio and, if necessary, an increase in cement content to ensure the degree of workability needed for full compaction and thus minimum permeability.

* REFERENCE - Portland Cement Association

APPENDIX A




